Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 85(7): 1746-1752, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-33913465

RESUMO

High-molecular-weight dextrin (WS-1000) was produced from waxy corn starch and enzymatically modified to link glucose by α-1,6 glycosidic bond at the terminal point of the glucose chain, forming MWS-1000. In this study, the physical properties of MWS-1000 were characterized, and the advantages of its use as a food modifier were described. From rheological and calorimetric studies, it was found that MWS-1000 does not undergo retrogradation, but it does not prevent the retrogradation of WS-1000, suggesting that they have no intermolecular interaction in solution. Investigation of the effect of MWS-1000 on the viscoelasticity of gelatinized wheat starch showed that in the linear viscoelastic region, storage modulus decreased and tan δ increased with increase in replaced MWS-1000 content. In addition, it was confirmed that gelatinized starch containing MWS-1000 showed viscoelastic behavior similar to that of commercially available custard cream.


Assuntos
Dextrinas/biossíntese , Tecnologia de Alimentos , Glucosiltransferases/metabolismo , Elasticidade , Peso Molecular , Amido/química , Viscosidade
2.
Biosci Biotechnol Biochem ; 85(7): 1737-1745, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-33836083

RESUMO

We prepared a high-molecular-weight modified dextrin (MWS-1000) from a partial hydrolysate of waxy corn starch with a weight average molecular weight of 1 × 106 (WS-1000) using Paenibacillus alginolyticus PP710 α-glucosyltransferase. The gel permeation chromatography showed that the weight average molecular weight of MWS-1000 was almost the same as that of WS-1000. The side chain lengths of WS-1000 and MWS-1000 after isomaltodextranase digestion were also shown to be similar to each other by high-performance anion exchange chromatography with pulsed amperometric detection. Since MWS-1000 confirmed the presence of α-1,6 bonds by enzyme digestibility, methylation, and 1H-NMR analyses, it was presumed that the structure of MWS-1000 was based on the introduction of α-1,6 glucosyl residues at the nonreducing ends of the partial hydrolysate of waxy corn starch. Furthermore, the MWS-1000 solution was not retrograded even during refrigerated storage or after repeated freeze-thaw cycles.


Assuntos
Dextrinas/síntese química , Glucose/química , Glucosiltransferases/metabolismo , Dextranase/química , Dextrinas/química , Peso Molecular , Espectroscopia de Prótons por Ressonância Magnética , beta-Amilase/química
3.
Protein Eng Des Sel ; 32(1): 33-40, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30715529

RESUMO

Fungus-derived GH-7 family cellobiohydrolase I (CBHI, EC 3.2.1.91) is one of the most important industrial enzymes for cellulosic biomass saccharification. Talaromyces cellulolyticus is well known as a mesophilic fungus producing a high amount of CBHI. Thermostability enhances the economic value of enzymes by making them more robust. However, CBHI has proven difficult to engineer, a fact that stems in part from its low expression in heterozygous hosts and its complex structure. Here, we report the successful improvement of the thermostability of CBHI from T. cellulolyticus using our homologous expression system and protein engineering method. We examined the key structures that seem to contribute to its thermostability using the 3D structural information of CBHI. Some parts of the structure of the Talaromyces emersonii CBHI were grafted into T. cellulolyticus CBHI and thermostable mutant CBHIs were constructed. The thermostability was primarily because of the improvement in the loop structures, and the positive effects of the mutations for thermostability were additive. By combing the mutations, the constructed thermophilic CBHI exhibits high hydrolytic activity toward crystalline cellulose with an optimum temperature at over 70°C. In addition, the strategy can be applied to the construction of the other thermostable CBHIs.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/química , Temperatura Alta , Mutação , Talaromyces/enzimologia , Celulose 1,4-beta-Celobiosidase/genética , Estabilidade Enzimática , Proteínas Fúngicas/genética , Estrutura Secundária de Proteína , Talaromyces/genética
4.
Biotechnol Biofuels ; 8: 77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26000036

RESUMO

BACKGROUND: Enzymatic removal of hemicellulose components such as xylan is an important factor for maintaining high glucose conversion from lignocelluloses subjected to low-severity pretreatment. Supplementation of xylanase in the cellulase mixture enhances glucose release from pretreated lignocellulose. Filamentous fungi produce multiple xylanases in their cellulase system, and some of them have modular structures consisting of a catalytic domain and a family 1 carbohydrate-binding module (CBM1). However, the role of CBM1 in xylanase in the synergistic hydrolysis of lignocellulose has not been investigated in depth. RESULTS: Thermostable endo-ß-1,4-xylanase (Xyl10A) from Talaromyces cellulolyticus, which is recognized as one of the core enzymes in the fungal cellulase system, has a modular structure consisting of a glycoside hydrolase family 10 catalytic domain and CBM1 at the C-terminus separated by a linker region. Three recombinant Xyl10A variants, that is, intact Xyl10A (Xyl10Awt), CBM1-deleted Xyl10A (Xyl10AdC), and CBM1 and linker region-deleted Xyl10A (Xyl10AdLC), were constructed and overexpressed in T. cellulolyticus. Cellulose-binding ability of Xyl10A CBM1 was demonstrated using quartz crystal microbalance with dissipation monitoring. Xyl10AdC and Xyl10AdLC showed relatively high catalytic activities for soluble and insoluble xylan substrates, whereas Xyl10Awt was more effective in xylan hydrolysis of wet disc-mill treated rice straw (WDM-RS). The enzyme mixture of cellulase monocomponents and intact or mutant Xyl10A enhanced the hydrolysis of WDM-RS glucan, with the most efficient synergism found in the interactions with Xyl10Awt. The increased glucan hydrolysis yield exhibited a linear relationship with the xylan hydrolysis yield by each enzyme. This relationship revealed significant hydrolysis of WDM-RS glucan with lower supplementation of Xyl10Awt. CONCLUSIONS: Our results suggest that Xyl10A CBM1 has the following two roles in synergistic hydrolysis of lignocellulose by Xyl10A and cellulases: enhancement of lignocellulosic xylan hydrolysis by binding to cellulose, and the efficient removal of xylan obstacles that interrupt the cellulase activity (because of similar binding target of CBM1). The combination of CBM-containing cellulases and xylanases in a fugal cellulase system could contribute to reduction of the enzyme loading in the hydrolysis of pretreated lignocelluloses.

5.
J Ind Microbiol Biotechnol ; 42(1): 137-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25387612

RESUMO

Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus) is one of the high cellulolytic enzyme-producing fungi. T. cellulolyticus exhibits the potential ability for high amount production of enzyme proteins. Using the homologous expression system under the control of a glucoamylase promoter, some kinds of cellulases of T. cellulolyticus can be expressed by T. cellulolyticus. On the other hand, hyperthermophilic cellulase has been expected to be useful in the industrial applications to biomass. The hyperthermophilic archaea Pyrococcus horikoshii and P. furiosus have GH family 5 and 12 hyperthermophilic endocellulase, respectively. The two kinds of hyperthermophilic endocellulases were successfully produced by T. cellulolyticus using the above expression system under the control of a glucoamylase promoter of T. cellulolyticus. These recombinant cellulases exhibited the same characteristics as those of the recombinant cellulases prepared in E. coli. The productions of the recombinant enzymes were estimated to be over 100 mg/L. In this study, we first report the overexpression of the hyperthermophilic enzymes of archaea using the fungal expression system.


Assuntos
Celulases/biossíntese , Regulação Enzimológica da Expressão Gênica , Pyrococcus/enzimologia , Talaromyces/metabolismo , Glucana 1,4-alfa-Glucosidase/genética , Regiões Promotoras Genéticas , Pyrococcus/genética
6.
Protein Expr Purif ; 94: 40-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24211645

RESUMO

Cellulose-inducible endo-ß-1,4-xylanase (Xyl10A) from the mesophilic fungus Acremonium cellulolyticus was purified, characterized, and expressed by a homologous expression system. A. cellulolyticus CF-2612 produces a high level of xylanase upon induction by Solka-Floc cellulose. To identify this xylanase, the major fraction showing xylanase activity was purified from the CF-2612 culture supernatant, and its gene was identified from the genome sequence. Amino acid sequence homology of Xyl10A revealed that the purified xylanase, designated Xyl10A, exhibited significant homology to family 10 of the glycoside hydrolases (GH10), possessing a cellulose-binding module 1 in the C-terminal region. The xyl10A gene was cloned and expressed in A. cellulolyticus under the control of a glucoamylase promoter. Two recombinant Xyl10As (rXyl10A-I, 53kDa, and rXyl10A-II, 51kDa) were purified that have slightly different molecular weights based on SDS-PAGE. The rXyl10As had the same physicochemical and enzymatic properties as wtXyl10A: high thermostability (Tm 80.5°C), optimum pH 5.0 and specific activity 232-251U/mg for birchwood xylan. The molecular weights of N-deglycosylated rXyl10As were consistent with that of wild-type Xyl10A (wtXyl10A, 51kDa).


Assuntos
Acremonium/enzimologia , Endo-1,4-beta-Xilanases/genética , Xilanos/metabolismo , Celulose/química , Clonagem Molecular , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Regulação Fúngica da Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Xilanos/química
7.
J Ind Microbiol Biotechnol ; 40(8): 823-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23700177

RESUMO

A starch-inducible homologous expression system in Acremonium cellulolyticus was constructed to successfully produce recombinant cellulolytic enzymes. A. cellulolyticus Y-94 produced amylolytic enzymes and cellulolytic enzymes as major proteins in the culture supernatant when grown with soluble starch (SS) and Solka-Flock cellulose (SF), respectively. To isolate a strong starch-inducible promoter, glucoamylase (GlaA), which belongs to glycoside hydrolase family 15, was purified from the SS culture of Y-94, and its gene was identified in the genome sequence. The 1.4-kb promoter and 0.4-kb terminator regions of glaA were amplified by polymerase chain reaction (PCR) and used in the construction of a plasmid that drives the expression of the cellobiohydrolase I (Cel7A) gene from A. cellulolyticus. The resultant expression plasmid, containing pyrF as a selection marker, was randomly integrated into the genome of the A. cellulolyticus Y-94 uracil auxotroph. The prototrophic transformant, Y203, produced recombinant Cel7A as an extracellular protein under control of the glaA promoter in the SS culture. Recombinant and wild-type Cel7A were purified from the SS culture of Y203 and the SF culture of A. cellulolyticus CF-2612, respectively. Both enzymes were found to have the same apparent molecular weight (60 kDa), thermostability (T m 67.0 °C), and optimum pH (pH 4.5), and showed similar catalytic properties for soluble and insoluble substrates. These results suggest that the A. cellulolyticus starch-inducible expression system will be helpful for characterization and improvement of fungal cellulolytic enzymes.


Assuntos
Acremonium/enzimologia , Acremonium/genética , Celulose 1,4-beta-Celobiosidase/biossíntese , Amido/metabolismo , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/genética , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese
8.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 5): 480-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21543851

RESUMO

AMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a sensor to maintain energy balance at both the cellular and the whole-body levels and is therefore a potential target for drug design against metabolic syndrome, obesity and type 2 diabetes. Here, the crystal structure of the phosphorylated-state mimic T172D mutant kinase domain from the human AMPK α2 subunit is reported in the apo form and in complex with a selective inhibitor, compound C. The AMPK α2 kinase domain exhibits a typical bilobal kinase fold and exists as a monomer in the crystal. Like the wild-type apo form, the T172D mutant apo form adopts the autoinhibited structure of the `DFG-out' conformation, with the Phe residue of the DFG motif anchored within the putative ATP-binding pocket. Compound C binding dramatically alters the conformation of the activation loop, which adopts an intermediate conformation between DFG-out and DFG-in. This induced fit forms a compound-C binding pocket composed of the N-lobe, the C-lobe and the hinge of the kinase domain. The pocket partially overlaps with the putative ATP-binding pocket. These three-dimensional structures will be useful to guide drug discovery.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Diabetes Mellitus Tipo 2/enzimologia , Humanos , Síndrome Metabólica/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Obesidade/enzimologia , Estrutura Terciária de Proteína , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/genética , Alinhamento de Sequência
9.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 3): 223-32, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20179333

RESUMO

The 70 kDa heat-shock proteins (Hsp70s) are highly conserved chaperones that are involved in several cellular processes, such as protein folding, disaggregation and translocation. In this study, the crystal structures of the human Hsp70 nucleotide-binding domain (NBD) fragment were determined in the nucleotide-free state and in complex with adenosine 5'-(beta,gamma-imido)triphosphate (AMPPNP). The structure of the nucleotide-free NBD fragment is similar to that of the AMPPNP-bound NBD fragment and is designated as the ;closed form'. In the nucleotide-free NBD fragment the closed form is intrinsically supported through interactions between Tyr15, Lys56 and Glu268 which connect subdomains IA, IB and IIB at the centre of the protein. Interaction with the substrate-binding domain (SBD) of Hsp70 or the BAG domain of BAG1 impairs this subdomain connection and triggers the rotation of subdomain IIA around a hydrophobic helix from subdomain IA. The subdomain rotation is limited by Asp199 and Asp206 from subdomain IIA and clearly defines the open form of the NBD. The open form is further stabilized by a new interaction between Gly230 from subdomain IIB and Ser340 from subdomain IIA. The structure of the NBD in the nucleotide-free state is determined by switching of the inter-subdomain interactions.


Assuntos
Proteínas de Choque Térmico HSP70/química , Nucleotídeos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Choque Térmico HSP70/isolamento & purificação , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína
10.
J Struct Biol ; 166(1): 32-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19135534

RESUMO

Interactions of Bcl-2 family proteins play a regulatory role in mitochondrial apoptosis. The pro-apoptotic protein Bak resides in the outer mitochondrial membrane, and the formation of Bak homo- or heterodimers is involved in the regulation of apoptosis. The previously reported structure of the human Bak protein (residues Glu16-Gly186) revealed that a zinc ion was coordinated with two pairs of Asp160 and His164 residues from the symmetry-related molecules. This zinc-dependent homodimer was regarded as an anti-apoptotic dimer. In the present study, we determined the crystal structure of the human Bak residues Ser23-Asn185 at 2.5A, and found a distinct type of homodimerization through Cys166 disulfide bridging between the symmetry-related molecules. In the two modes of homodimerization, the molecular interfaces are completely different. In the membrane-targeted model of the S-S bridged dimer, the BH3 motifs are too close to the membrane to interact directly with the anti-apoptotic relatives, such as Bcl-x(L). Therefore, the Bak dimer structure reported here may represent a pro-apoptotic mode under oxidized conditions.


Assuntos
Modelos Moleculares , Multimerização Proteica , Proteína Killer-Antagonista Homóloga a bcl-2/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Cisteína/química , Cistina/química , Interações Hidrofóbicas e Hidrofílicas , Luz , Dados de Sequência Molecular , Peso Molecular , Oxirredução , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Recombinantes/química , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteína Killer-Antagonista Homóloga a bcl-2/genética
11.
J Biol Chem ; 283(28): 19657-64, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18477562

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) catalyze the degradation of the cyclic nucleotides cAMP and cGMP, which are important second messengers. Five of the 11 mammalian PDE families have tandem GAF domains at their N termini. PDE10A may be the only mammalian PDE for which cAMP is the GAF domain ligand, and it may be allosterically stimulated by cAMP. PDE10A is highly expressed in striatal medium spiny neurons. Here we report the crystal structure of the C-terminal GAF domain (GAF-B) of human PDE10A complexed with cAMP at 2.1-angstroms resolution. The conformation of the PDE10A GAF-B domain monomer closely resembles those of the GAF domains of PDE2A and the cyanobacterium Anabaena cyaB2 adenylyl cyclase, except for the helical bundle consisting of alpha1, alpha2, and alpha5. The PDE10A GAF-B domain forms a dimer in the crystal and in solution. The dimerization is mainly mediated by hydrophobic interactions between the helical bundles in a parallel arrangement, with a large buried surface area. In the PDE10A GAF-B domain, cAMP tightly binds to a cNMP-binding pocket. The residues in the alpha3 and alpha4 helices, the beta6 strand, the loop between 3(10) and alpha4, and the loop between alpha4 and beta5 are involved in the recognition of the phosphate and ribose moieties. This recognition mode is similar to those of the GAF domains of PDE2A and cyaB2. In contrast, the adenine base is specifically recognized by the PDE10A GAF-B domain in a unique manner, through residues in the beta1 and beta2 strands.


Assuntos
Diester Fosfórico Hidrolases/química , Anabaena/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação/fisiologia , Cristalografia por Raios X , AMP Cíclico/química , AMP Cíclico/genética , AMP Cíclico/metabolismo , GMP Cíclico/química , GMP Cíclico/genética , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Dimerização , Humanos , Neurônios/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Homologia Estrutural de Proteína , Córtex Visual/enzimologia
12.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 4): 397-406, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18391406

RESUMO

The target of diphtheria toxin is the diphthamide residue in translation elongation factor 2 (EF-2), which is generated by a three-step post-translational modification of a specific histidine residue in the EF-2 precursor. In the second modification step, an S-adenosylmethionine-dependent methyltransferase, diphthine synthase (DS), catalyzes the trimethylation of the EF-2 precursor. The homodimeric crystal structures of the archaeal diphthine synthases from Pyrococcus horikoshii OT3 and Aeropyrum pernix K1 have been determined. These structures share essentially the same overall fold as the cobalt-precorrin-4 methyltransferase CbiF, confirming that DS belongs to the dimeric class III family of methyltransferases. In the P. horikoshii DS dimer, only one of the two active sites binds the reaction product S-adenosyl-L-homocysteine (AdoHcy), while the other active site contains no ligand. This asymmetric AdoHcy binding may be a consequence of intra-domain and inter-domain movements upon binding of AdoHcy at one of the two sites. These movements disrupt the twofold dimeric symmetry of the DS dimer and probably cause lower AdoHcy affinity at the other binding site.


Assuntos
Metiltransferases/química , Fator 2 de Elongação de Peptídeos/química , Processamento de Proteína Pós-Traducional , Aeropyrum/enzimologia , Aeropyrum/genética , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Metiltransferases/genética , Modelos Moleculares , Dados de Sequência Molecular , Fator 2 de Elongação de Peptídeos/genética , Ligação Proteica , Conformação Proteica , Pyrococcus/enzimologia , Pyrococcus/genética , S-Adenosil-Homocisteína/metabolismo , Difração de Raios X
13.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 12): 1225-34, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18084070

RESUMO

Familial oncocytic thyroid carcinoma is associated with a missense mutation, P308Q, in the C-terminal domain of Tim44. Tim44 is the mitochondrial inner-membrane translocase subunit and it functions as a membrane anchor for the mitochondrial heat-shock protein 70 (mtHsp70). Here, the crystal structure of the human Tim44 C-terminal domain complexed with pentaethylene glycol has been determined at 1.9 A resolution. The overall structure resembles that of the nuclear transport factor 2-like domain. In the crystal structure, pentaethylene glycol molecules are associated at two potential membrane-binding sites: the large hydrophobic cavity and the highly conserved loop between the alpha1 and alpha2 helices near Pro308. A comparison with the yeast homolog revealed that lipid binding induces conformational changes around the alpha1-alpha2 loop, leading to slippage of the alpha1 helix along the large beta-sheet. These changes may play important roles in the translocation of polypeptides across the mitochondrial inner membrane.


Assuntos
Proteínas de Transporte/química , Proteínas de Membrana/química , Proteínas Mitocondriais/química , Mutação de Sentido Incorreto/genética , Polietilenoglicóis/química , Proteínas Recombinantes/química , Proteínas de Transporte/genética , Domínio Catalítico , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína/genética , Espécies Reativas de Oxigênio , Proteínas Recombinantes/genética , Alinhamento de Sequência , Relação Estrutura-Atividade , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-18084077

RESUMO

The gene encoding TTHA1544 is a singleton found in the Thermus thermophilus HB8 genome and encodes a 131-amino-acid protein. The crystal structure of TTHA1544 has been determined at 2.0 A resolution by the single-wavelength anomalous dispersion method in order to elucidate its function. There are two molecules in the asymmetric unit. Each molecule consists of four alpha-helices and six beta-strands, with the beta-strands composing a central beta-sheet. A structural homology search revealed that the overall structure of TTHA1544 resembles the alpha/beta-hydrolase fold, although TTHA1544 lacks the catalytic residues of a hydrolase. These results suggest that TTHA1544 represents the minimized alpha/beta-hydrolase fold and that an additional component would be required for its activity.


Assuntos
Hidrolases/química , Hidrolases/metabolismo , Dobramento de Proteína , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Hidrolases/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Thermus thermophilus/genética
15.
J Biol Chem ; 282(51): 37191-204, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17947230

RESUMO

Interleukin (IL)-15 is a pleiotropic cytokine that plays a pivotal role in both innate and adaptive immunity. IL-15 is unique among cytokines due to its participation in a trans signaling mechanism in which IL-15 receptor alpha (IL-15Ralpha) from one subset of cells presents IL-15 to neighboring IL-2Rbeta/gammac-expressing cells. Here we present the crystal structure of IL-15 in complex with the sushi domain of IL-15Ralpha. The structure reveals that the alpha receptor-binding epitope of IL-15 adopts a unique conformation, which, together with amino acid substitutions, permits specific interactions with IL-15Ralpha that account for the exceptionally high affinity of the IL-15.IL-15Ralpha complex. Interestingly, analysis of the topology of IL-15 and IL-15Ralpha at the IL-15.IL-15Ralpha interface suggests that IL-15 should be capable of participating in a cis signaling mechanism similar to that of the related cytokine IL-2. Indeed, we present biochemical data demonstrating that IL-15 is capable of efficiently signaling in cis through IL-15Ralpha and IL-2Rbeta/gammac expressed on the surface of a single cell. Based on our data we propose that cis presentation of IL-15 may be important in certain biological contexts and that flexibility of IL-15Ralpha permits IL-15 and its three receptor components to be assembled identically at the ligand-receptor interface whether IL-15 is presented in cis or trans. Finally, we have gained insights into IL-15.IL-15Ralpha.IL-2Rbeta.gammac quaternary complex assembly through the use of molecular modeling.


Assuntos
Epitopos/química , Interleucina-15/química , Modelos Moleculares , Complexos Multiproteicos/química , Animais , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Epitopos/metabolismo , Subunidade gama Comum de Receptores de Interleucina/química , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Interleucina-15/metabolismo , Subunidade beta de Receptor de Interleucina-2/química , Subunidade beta de Receptor de Interleucina-2/metabolismo , Camundongos , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , Receptores de Interleucina-15/química , Receptores de Interleucina-15/metabolismo , Transdução de Sinais/fisiologia
16.
J Mol Biol ; 363(1): 114-24, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16962612

RESUMO

The nuclear pore complex mediates the transport of macromolecules across the nuclear envelope (NE). The vertebrate nuclear pore protein Nup35, the ortholog of Saccharomyces cerevisiae Nup53p, is suggested to interact with the NE membrane and to be required for nuclear morphology. The highly conserved region between vertebrate Nup35 and yeast Nup53p is predicted to contain an RNA-recognition motif (RRM) domain. Due to its low level of sequence homology with other RRM domains, the RNP1 and RNP2 motifs have not been identified in its primary structure. In the present study, we solved the crystal structure of the RRM domain of mouse Nup35 at 2.7 A resolution. The Nup35 RRM domain monomer adopts the characteristic betaalphabetabetaalphabeta topology, as in other reported RRM domains. The structure allowed us to locate the atypical RNP1 and RNP2 motifs. Among the RNP motif residues, those on the beta-sheet surface are different from those of the canonical RRM domains, while those buried in the hydrophobic core are highly conserved. The RRM domain forms a homodimer in the crystal, in accordance with analytical ultracentrifugation experiments. The beta-sheet surface of the RRM domain, with its atypical RNP motifs, contributes to homodimerization mainly by hydrophobic interactions: the side-chain of Met236 in the beta4 strand of one Nup35 molecule is sandwiched by the aromatic side-chains of Phe178 in the beta1 strand and Trp209 in the beta3 strand of the other Nup35 molecule in the dimer. This structure reveals a new homodimerization mode of the RRM domain.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dimerização , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
18.
Biochemistry ; 44(36): 12041-8, 2005 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-16142901

RESUMO

The topa quinone (TPQ) cofactor of copper amine oxidase is generated by copper-assisted self-processing of the precursor protein. Metal ion specificity for TPQ biogenesis has been reinvestigated with the recombinant phenylethylamine oxidase from Arthrobacter globiformis. Besides Cu2+ ion, some divalent metal ions such as Co2+, Ni2+, and Zn2+ were also bound to the metal site of the apoenzyme so tightly that they were not replaced by excess Cu2+ ions added subsequently. Although these noncupric metal ions could not initiate TPQ formation under the atmospheric conditions, we observed slow spectral changes in the enzyme bound with Co2+ or Ni2+ ion under the dioxygen-saturating conditions. Resonance Raman spectroscopy and titration with phenylhydrazine provided unambiguous evidence for TPQ formation by Co2+ and Ni2+ ions. Steady-state kinetic analysis showed that the enzymes activated by Co2+ and Ni2+ ions were indistinguishable from the corresponding metal-substituted enzymes prepared from the native copper enzyme (Kishishita, S., Okajima, T., Kim, M., Yamaguchi, H., Hirota, S., Suzuki, S., Kuroda, S., Tanizawa, K., and Mure, M. (2003) J. Am. Chem. Soc. 125, 1041-1055). X-ray crystallographic analysis has also revealed structural identity of the active sites of Co- and Ni-activated enzymes with Cu-enzyme. Thus Cu2+ ion is not the sole metal ion assisting TPQ formation. Co2+ and Ni2+ ions are also capable of forming TPQ, though much less efficiently than Cu2+.


Assuntos
Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Arthrobacter/enzimologia , Benzoquinonas/metabolismo , Metais Pesados/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Íons/química , Íons/metabolismo , Metais Pesados/química , Análise Espectral
20.
J Am Chem Soc ; 125(4): 1041-55, 2003 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-12537504

RESUMO

The role of the active site Cu(2+) of phenylethylamine oxidase from Arthrobacter globiformis (AGAO) has been studied by substitution with other divalent cations, where we were able to remove >99.5% of Cu(2+) from the active site. The enzymes reconstituted with Co(2+) and Ni(2+) (Co- and Ni-AGAO) exhibited 2.2 and 0.9% activities, respectively, of the original Cu(2+)-enzyme (Cu-AGAO), but their K(m) values for amine substrate and dioxygen were comparable. X-ray crystal structures of the Co- and Ni-AGAO were solved at 2.0-1.8 A resolution. These structures revealed changes in the metal coordination environment when compared to that of Cu-AGAO. However, the hydrogen-bonding network around the active site involving metal-coordinating and noncoordinating water molecules was preserved. Upon anaerobic mixing of the Cu-, Co-, and Ni-AGAO with amine substrate, the 480 nm absorption band characteristic of the oxidized form of the topaquinone cofactor (TPQ(ox)) disappeared rapidly (< 6 ms), yielding the aminoresorcinol form of the reduced cofactor (TPQ(amr)). In contrast to the substrate-reduced Cu-AGAO, the semiquinone radical (TPQ(sq)) was not detected in Co- and Ni-AGAO. Further, in the latter, TPQ(amr) reacted reversibly with the product aldehyde to form a species with a lambda(max) at around 350 nm that was assigned as the neutral form of the product Schiff base (TPQ(pim)). Introduction of dioxygen to the substrate-reduced Co- and Ni-AGAO resulted in the formation of a TPQ-related intermediate absorbing at around 360 nm, which was assigned to the neutral iminoquinone form of the 2e(-)-oxidized cofactor (TPQ(imq)) and which decayed concomitantly with the generation of TPQ(ox). The rate of TPQ(imq) formation and its subsequent decay in Co- and Ni-AGAO was slow when compared to those of the corresponding reactions in Cu-AGAO. The low catalytic activities of the metal-substituted enzymes are due to the impaired efficiencies of the oxidative half-reaction in the catalytic cycle of amine oxidation. On the basis of these results, we propose that the native Cu(2+) ion has essential roles such as catalyzing the electron transfer between TPQ(amr) and dioxygen, in part by providing a binding site for 1e(-)- and 2e(-)-reduced dioxygen species to be efficiently protonated and released and also preventing the back reaction between the product aldehyde and TPQ(amr).


Assuntos
Amina Oxidase (contendo Cobre)/química , Cobalto/química , Cobre/química , Níquel/química , Amina Oxidase (contendo Cobre)/metabolismo , Arthrobacter/enzimologia , Cobalto/metabolismo , Cobre/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Níquel/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...